Information-processing tasks modelled by homomorphisms between relational structures can witness quantum advantage when entanglement is used as a computational resource. We prove that the occurrence of quantum advantage is determined by the same type of algebraic structure (known as a minion) that captures the polymorphism identities of CSPs and, thus, CSP complexity. We investigate the connection between the minion of quantum advantage and other known minions controlling CSP tractability and width. In this way, we make use of complexity results from the algebraic theory of CSPs to characterise the occurrence of quantum advantage in the case of graphs, and to obtain new necessary and sufficient conditions in the case of arbitrary relational structures.
翻译:暂无翻译