For a finite set $\cal F$ of polynomials over fixed finite prime field of size $p$ containing all polynomials $x^2 - x$ a Nullstellensatz proof of the unsolvability of the system $$ f = 0\ ,\ \mbox{ all } f \in {\cal F} $$ in the field is a linear combination $\sum_{f \in {\cal F}} \ h_f \cdot f$ that equals to $1$ in the ring of polynomails. The measure of complexity of such a proof is its degree: $\max_f deg(h_f f)$. We study the problem to establish degree lower bounds for some {\em extended} NS proof systems: these systems prove the unsolvability of $\cal F$ by proving the unsolvability of a bigger set ${\cal F}\cup {\cal E}$, where set $\cal E$ may use new variables $r$ and contains all polynomials $r^p - r$, and satisfies the following soundness condition: -- - Any $0,1$-assignment $\overline a$ to variables $\overline x$ can be appended by an assignment $\overline b$ to variables $\overline r$ such that for all $g \in {\cal E}$ it holds that $g(\overline a, \overline b) = 0$. We define a notion of pseudo-solutions of $\cal F$ and prove that the existence of pseudo-solutions with suitable parameters implies lower bounds for two extended NS proof systems ENS and UENS defined in Buss et al. (1996/97). Further we give a combinatorial example of $\cal F$ and candidate pseudo-solutions based on the pigeonhole principle.
翻译:以固定的固定基质字段为单位的美元为单位, 以美元计, 以美元计, 以美元计, 以美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 以美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元 美元 美元计, 美元 美元计, 美元 。, 。, 美元 美元计, 美元计, 美元, 美元, 美元 美元 美元 美元, 美元 美元 美元, 美元 。, 。 美元 美元 美元 。 。