Current Open-Domain Question Answering (ODQA) model paradigm often contains a retrieving module and a reading module. Given an input question, the reading module predicts the answer from the relevant passages which are retrieved by the retriever. The recent proposed Fusion-in-Decoder (FiD), which is built on top of the pretrained generative model T5, achieves the state-of-the-art performance in the reading module. Although being effective, it remains constrained by inefficient attention on all retrieved passages which contain a lot of noise. In this work, we propose a novel method KG-FiD, which filters noisy passages by leveraging the structural relationship among the retrieved passages with a knowledge graph. We initiate the passage node embedding from the FiD encoder and then use graph neural network (GNN) to update the representation for reranking. To improve the efficiency, we build the GNN on top of the intermediate layer output of the FiD encoder and only pass a few top reranked passages into the higher layers of encoder and decoder for answer generation. We also apply the proposed GNN based reranking method to enhance the passage retrieval results in the retrieving module. Extensive experiments on common ODQA benchmark datasets (Natural Question and TriviaQA) demonstrate that KG-FiD can improve vanilla FiD by up to 1.5% on answer exact match score and achieve comparable performance with FiD with only 40% of computation cost.
翻译:当前开放式问答模式( ODQA ) 模式通常包含一个检索模块和读取模块。 在输入问题下, 读取模块预言来自检索器检索的相关段落的答案。 最新提议的 Fusion- in-Decoder (FID), 建在预先训练的基因化模型 T5 上方, 实现了阅读模块中的最新性能。 尽管它有效, 仍然受到所有回收通道的关注效率低下的限制, 其中含有大量噪音 。 在这项工作中, 我们提出了一个新型的 KG- FiD 方法, 它将利用检索到的段落之间的结构关系, 用一个知识图形来过滤噪音的段落。 我们从 FiD 编码中启动连接的通道节点, 然后使用图形内线网络来更新重新排序。 提高效率, 我们把 GNNN 建在 FiD 编码中层输出的顶端, 并且只通过几个最高级的解析段, 将40级的评分过滤器过滤器过滤到解析器中。 我们还在解调的 GNNO 模块上, 升级到解调的普通数据。