Optimal Control Problems consist on the optimisation of an objective functional subjected to a set of Ordinary Differential Equations. In this work, we consider the effects on the stability of the numerical solution when this optimisation is discretised in time. In particular, we analyse a OCP with a quadratic functional and linear ODE, discretised with Mid-point and implicit Euler. We show that the numerical stability and the presence of numerical oscillations depends not only on the time-step size, but also on the parameters of the objective functional, which measures the amount of control input. Finally, we also show with an illustrative example that these results also carry over non-linear optimal control problems
翻译:最佳控制问题在于优化一个受一套普通差异等量制约的客观功能。 在这项工作中, 当优化在时间上分离时, 我们考虑数字解决方案对数字解决方案稳定性的影响。 特别是, 我们分析一个带有二次函数和线性OCP的OCP, 与中点和隐含的 Euler 分离。 我们显示, 数字稳定性和数字振荡的存在不仅取决于时间步骤大小, 也取决于衡量控制投入量的客观功能参数。 最后, 我们还用一个示例来说明这些结果还存在非线性最佳控制问题。