We provide a polynomial-time classical algorithm for noisy quantum circuits. The algorithm computes the expectation value of any observable for any circuit, with a small average error over input states drawn from an ensemble (e.g. the computational basis). Our approach is based upon the intuition that noise exponentially damps non-local correlations relative to local correlations. This enables one to classically simulate a noisy quantum circuit by only keeping track of the dynamics of local quantum information. Our algorithm also enables sampling from the output distribution of a circuit in quasi-polynomial time, so long as the distribution anti-concentrates. A number of practical implications are discussed, including a fundamental limit on the efficacy of noise mitigation strategies: any quantum circuit for which error mitigation is efficient must be classically simulable.
翻译:暂无翻译