We present a novel scheme to boost detection power for kernel maximum mean discrepancy based sequential change-point detection procedures. Our proposed scheme features an optimal sub-sampling of the history data before the detection procedure, in order to tackle the power loss incurred by the random sub-sample from the enormous history data. We apply our proposed scheme to both Scan $B$ and Kernel Cumulative Sum (CUSUM) procedures, and improved performance is observed from extensive numerical experiments.
翻译:我们提出了一个新计划,以提升内核最大平均值差异的探测能力,其依据是顺序变化点检测程序。我们提出的计划在检测程序之前对历史数据进行最优化的子抽样,以便解决来自巨大历史数据的随机子抽样造成的能量损失。 我们将我们提出的计划用于扫描$B$和Kernel累积总和(CUSUM)程序,并且从广泛的数字实验中观察到绩效的改善。