Background modeling is widely used for intelligent surveillance systems to detect moving targets by subtracting the static background components. Most roadside LiDAR object detection methods filter out foreground points by comparing new data points to pre-trained background references based on descriptive statistics over many frames (e.g., voxel density, number of neighbors, maximum distance). However, these solutions are inefficient under heavy traffic, and parameter values are hard to transfer from one scenario to another. In early studies, the probabilistic background modeling methods widely used for the video-based system were considered unsuitable for roadside LiDAR surveillance systems due to the sparse and unstructured point cloud data. In this paper, the raw LiDAR data were transformed into a structured representation based on the elevation and azimuth value of each LiDAR point. With this high-order tensor representation, we break the barrier to allow efficient high-dimensional multivariate analysis for roadside LiDAR background modeling. The Bayesian Nonparametric (BNP) approach integrates the intensity value and 3D measurements to exploit the measurement data using 3D and intensity info entirely. The proposed method was compared against two state-of-the-art roadside LiDAR background models, computer vision benchmark, and deep learning baselines, evaluated at point, object, and path levels under heavy traffic and challenging weather. This multimodal Weighted Bayesian Gaussian Mixture Model (GMM) can handle dynamic backgrounds with noisy measurements and substantially enhances the infrastructure-based LiDAR object detection, whereby various 3D modeling for smart city applications could be created.


翻译:大多数路边激光雷达物体探测方法通过将新数据点与基于许多框架(例如, voxel 密度、邻居数量、最大距离)的描述性统计数据(例如, voxel 密度、邻居数量、最大距离)的预修背景参考值进行比较,从而将新数据点与事先经过培训的背景参考值进行对比,从而过滤出地面点。然而,这些解决方案在交通量大的情况下效率低下,参数值很难从一种情景转换到另一种情景。在早期研究中,广泛用于视频系统的概率背景模型方法被认为不适合路边激光雷达探测器监测系统,因为缺少和非结构的点云数据。在本论文中,原始激光雷达数据被转换为结构化代表,以基于每个激光雷达点(例如, voxel 密度、邻居数、最大距离)的描述值为基础。我们打破障碍,以便对路边的激光雷达背景模型进行高效的高维度多变分析。Bayesian Nationalian (BNP) 方法将密度值和三维度测量方法结合了3D测量数据,利用3D 和深度目标数据进行3D 的智能目标数据,在高压背景中,在高水平的模型上, 和高压的轨道上,拟议测路路路路路路路路路段进行了对比了两个,在高比,在高的基线和深的测路路基标准,在高路基级标准中进行了两次对比评估。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月2日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
16+阅读 · 2021年3月2日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员