It is challenging to restore low-resolution (LR) images to super-resolution (SR) images with correct and clear details. Existing deep learning works almost neglect the inherent structural information of images, which acts as an important role for visual perception of SR results. In this paper, we design a hierarchical feature exploitation network to probe and preserve structural information in a multi-scale feature fusion manner. First, we propose a cross convolution upon traditional edge detectors to localize and represent edge features. Then, cross convolution blocks (CCBs) are designed with feature normalization and channel attention to consider the inherent correlations of features. Finally, we leverage multi-scale feature fusion group (MFFG) to embed the cross convolution blocks and develop the relations of structural features in different scales hierarchically, invoking a lightweight structure-preserving network named as Cross-SRN. Experimental results demonstrate the Cross-SRN achieves competitive or superior restoration performances against the state-of-the-art methods with accurate and clear structural details. Moreover, we set a criterion to select images with rich structural textures. The proposed Cross-SRN outperforms the state-of-the-art methods on the selected benchmark, which demonstrates that our network has a significant advantage in preserving edges.


翻译:现有的深层学习工作几乎忽略了图像固有的结构信息,而图像的内在结构信息是视觉看待SR结果的一个重要作用。在本文中,我们设计了一个等级特征开发网络,以多尺度特征聚合的方式探测和保存结构信息。首先,我们提议对传统的边缘探测器进行交叉演化,以定位和代表边缘特征。然后,交叉演化区块的设计带有特征正常化,并关注地段的内在关联性。最后,我们利用多尺度特征融合组(MFFG)来嵌入交叉变异区块,并发展不同等级的结构特征关系,同时利用称为Cross-SRN的轻量级结构保护网络。实验结果显示,跨SRN在与最新技术方法的恢复方面实现了竞争或优异性表现,并有准确和明确的结构细节。此外,我们制定了一个标准,用以选择具有丰富结构纹理的图像。拟议的跨尺度组合组合组(MFFG)超越了我们所选择的网络的显著优势。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员