We study a version of adversarial classification where an adversary is empowered to corrupt data inputs up to some distance $\varepsilon$, using tools from variational analysis. In particular, we describe necessary conditions associated with the optimal classifier subject to such an adversary. Using the necessary conditions, we derive a geometric evolution equation which can be used to track the change in classification boundaries as $\varepsilon$ varies. This evolution equation may be described as an uncoupled system of differential equations in one dimension, or as a mean curvature type equation in higher dimension. In one dimension we rigorously prove that one can use the initial value problem starting from $\varepsilon=0$, which is simply the Bayes classifier, in order to solve for the global minimizer of the adversarial problem. Numerical examples illustrating these ideas are also presented.
翻译:我们研究一种对抗性分类的版本,即对手有权利用变异分析工具将数据输入腐蚀到某种距离,甚至到瓦列普西隆美元。我们特别描述了与受这种对手制约的最佳分类器相关的必要条件。我们利用必要条件得出几何进化方程,可以用来追踪分类界限的变化,以美元为不同。这个进化方程可被描述为一个维度的差异方程的未混合系统,或更高维度的平均曲度方程。在一个维度中,我们严格证明可以使用最初的数值问题,从美元为瓦列普西隆=0美元开始,而Bayes分类器只是这个标准,以便解决全球对抗性问题最小化的问题。还提出了说明这些想法的数字例子。