In terms of Generative Adversarial Networks (GANs), the information metric to discriminate the generative data from the real data, lies in the key point of generation efficiency, which plays an important role in GAN-based applications, especially in anomaly detection. As for the original GAN, there exist drawbacks for its hidden information measure based on KL divergence on rare events generation and training performance for adversarial networks. Therefore, it is significant to investigate the metrics used in GANs to improve the generation ability as well as bring gains in the training process. In this paper, we adopt the exponential form, referred from the information measure, i.e. MIM, to replace the logarithm form of the original GAN. This approach is called MIM-based GAN, has better performance on networks training and rare events generation. Specifically, we first discuss the characteristics of training process in this approach. Moreover, we also analyze its advantages on generating rare events in theory. In addition, we do simulations on the datasets of MNIST and ODDS to see that the MIM-based GAN achieves state-of-the-art performance on anomaly detection compared with some classical GANs.


翻译:在基因反转网络(GANs)方面,区别实际数据基因数据的信息衡量标准在于产生效率的关键点,在以GAN为基础的应用中,特别是在异常现象检测中发挥重要作用。关于原GAN,基于KL在罕见事件生成和培训性能方面存在差异的隐藏信息衡量方法存在缺陷,因此,必须调查GANs中用来提高生成能力和在培训过程中取得收益的衡量标准。在本文中,我们采用了从信息计量(即MIM)中引用的指数形式,以取代原GAN的对数形式。这种方法被称为MIM-GAN,在网络培训和罕见事件生成方面表现更好。具体地说,我们首先讨论这一方法的培训过程的特点。此外,我们还分析了其在理论中产生罕见事件的好处。此外,我们模拟了MNIST和ODDDDDS的数据集,以便看到以MIM为基础的GAN为基地的GAN在GAN的古典检测中取得了某些古典的GAN-AN性能。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
61+阅读 · 2020年3月4日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
8+阅读 · 2019年2月15日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员