We extend a recently proposed 1-nearest-neighbor based multiclass learning algorithm and prove that our modification is universally strongly Bayes-consistent in all metric spaces admitting any such learner, making it an "optimistically universal" Bayes-consistent learner. This is the first learning algorithm known to enjoy this property; by comparison, the $k$-NN classifier and its variants are not generally universally Bayes-consistent, except under additional structural assumptions, such as an inner product, a norm, finite dimension, or a Besicovitch-type property. The metric spaces in which universal Bayes consistency is possible are the "essentially separable" ones -- a notion that we define, which is more general than standard separability. The existence of metric spaces that are not essentially separable is widely believed to be independent of the ZFC axioms of set theory. We prove that essential separability exactly characterizes the existence of a universal Bayes-consistent learner for the given metric space. In particular, this yields the first impossibility result for universal Bayes consistency. Taken together, our results completely characterize strong and weak universal Bayes consistency in metric spaces.


翻译:我们推广了最近提出的以近邻为主的多级学习算法,并证明我们所作的修改在所有衡量空间都普遍强烈地一致接受任何这样的学习者,使其成为第一个已知享有这种属性的“乐观普遍”的学习算法;相比之下,美元-NNE分类器及其变种一般不是普遍一致的海湾,除非根据额外的结构假设,如内部产品、规范、有限维度或贝西科维奇类型的属性。通用贝耶斯一致性有可能成为“基本可分离性”的衡量空间,这是我们定义的一种概念,比标准可分离性更普遍。人们普遍认为,基本上不具有分离性的计量空间的存在是独立于ZFC定理论的氧化物的。我们证明,关键分离性正是在特定计量空间中存在一个通用的贝耶斯兼容性学习者。特别是,这给普遍贝耶斯一致性带来了第一个无法实现的“基本一致性” 。

1
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
162+阅读 · 2020年11月13日
【干货书】数据科学家统计实战,附代码与409页pdf
专知会员服务
59+阅读 · 2020年11月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
6+阅读 · 2017年7月17日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
162+阅读 · 2020年11月13日
【干货书】数据科学家统计实战,附代码与409页pdf
专知会员服务
59+阅读 · 2020年11月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员