Multiple geographical feature label placement (MGFLP) has been a fundamental problem in geographic information visualization for decades. The nature of label positioning is proven an NP-hard problem, where the complexity of such a problem is directly influenced by the volume of input datasets. Advances in computer technology and robust approaches have addressed the problem of labeling. However, what is less considered in recent studies is the computational complexity of MGFLP, which significantly decreases the adoptability of those recently introduced approaches. In this study, an MPI parallel genetic algorithm is proposed for MGFLP based on a hybrid of fixed position model and sliding model to label fixed-types of geographical features. To evaluate the quality of label placement, a quality function is defined based on four quality metrics, label-feature conflict, label-label conflict, label ambiguity factor, and label position priority for points and polygons. Experimental results reveal that the proposed algorithm significantly reduced the overall score of the quality function and the computational time of label placement compared to the previous studies. The algorithm achieves a result in less than one minute with 6 label-feature conflicts, while Parallel-MS (Lessani et al., 2021) obtains the result in more than 20 minutes with 12 label-feature conflicts for the same dataset.


翻译:几十年来,在地理信息可视化(MGFLP)中,多重地物标签定位(MGFLP)是一个根本性的问题。标签定位的性质已证明是一个NP-硬性的问题,这个问题的复杂性直接受到输入数据集数量的影响。计算机技术的进步和稳健的方法解决了标签问题。然而,最近的研究中较少考虑的是MGFLP的计算复杂性,这大大降低了最近采用的方法的可采用性。在本研究中,为MGFLP提出了一种MPI平行的遗传算法,其依据是固定位置模型和滑动模型的混合,以标签固定类型地理特征标签。为了评估标签定位的质量,根据四个质量指标、标签-功能冲突、标签-标签冲突、标签模糊系数因素以及点和多边形的标签位置优先度来界定质量功能。实验结果表明,拟议的算法大大降低了质量功能的总体分数和标签放置的计算时间。与以前的研究相比,计算算法的结果不到一分钟,6个标签-性冲突是固定式的,而平行-MS(Lessani et al)比12分钟冲突的结果要2021。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月1日
Arxiv
14+阅读 · 2019年9月11日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员