3D object detection algorithms for autonomous driving reason about 3D obstacles either from 3D birds-eye view or perspective view or both. Recent works attempt to improve the detection performance via mining and fusing from multiple egocentric views. Although the egocentric perspective view alleviates some weaknesses of the birds-eye view, the sectored grid partition becomes so coarse in the distance that the targets and surrounding context mix together, which makes the features less discriminative. In this paper, we generalize the research on 3D multi-view learning and propose a novel multi-view-based 3D detection method, named X-view, to overcome the drawbacks of the multi-view methods. Specifically, X-view breaks through the traditional limitation about the perspective view whose original point must be consistent with the 3D Cartesian coordinate. X-view is designed as a general paradigm that can be applied on almost any 3D detectors based on LiDAR with only little increment of running time, no matter it is voxel/grid-based or raw-point-based. We conduct experiments on KITTI and NuScenes datasets to demonstrate the robustness and effectiveness of our proposed X-view. The results show that X-view obtains consistent improvements when combined with four mainstream state-of-the-art 3D methods: SECOND, PointRCNN, Part-A^2, and PV-RCNN.
翻译:3D 对象检测算法 3D 自动驱动理由 3D 3D 障碍 3D 从 3D 鸟眼视角或视角视角或两者 。 最近的工作试图通过采矿和从多重自我中心观点中放大来改进探测性能。 虽然以自我为中心的视角减轻了鸟眼观点的某些弱点,但区块网格分割在目标和周围环境结合的距离上变得非常粗糙,使得目标与周围环境混在一起,从而使其特征不那么具有歧视性。 在本文中,我们概括了3D 多视角学习的研究,并提出了一种新型的多视角3D 3D 检测方法,名为 X- 视图,以克服多视图方法的缺陷。 具体地说, X- 视图打破了对视角观点观点的传统限制,其原始点必须与 3D Cartesian 协调一致。 X- 视图设计为一种总范式模式,可以适用于基于LIDAR 几乎任何3D 探测器,且运行时间增加不多,没有基于 voxel/ grid-RC 或原始点基础。 我们对 KITTITI和 NSces Den 数据进行实验,以展示,以显示 X- sl- 4P- pal- proview 4- prog- pres- prog- pal- pal- prog- sal- sal- prog- sal- sal- pass res- sal- sal- prog- sal- prog- sal- sal- sal- pal- prog- prog- pal- prog- pals- prog- sal- pal- pal- pal- pal- sal- sal- pal- sals- sal- sal- sal- sal- sal- sal- sal- sal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal-