The collection of eye gaze information provides a window into many critical aspects of human cognition, health and behaviour. Additionally, many neuroscientific studies complement the behavioural information gained from eye tracking with the high temporal resolution and neurophysiological markers provided by electroencephalography (EEG). One of the essential eye-tracking software processing steps is the segmentation of the continuous data stream into events relevant to eye-tracking applications, such as saccades, fixations, and blinks. Here, we introduce DETRtime, a novel framework for time-series segmentation that creates ocular event detectors that do not require additionally recorded eye-tracking modality and rely solely on EEG data. Our end-to-end deep learning-based framework brings recent advances in Computer Vision to the forefront of the times series segmentation of EEG data. DETRtime achieves state-of-the-art performance in ocular event detection across diverse eye-tracking experiment paradigms. In addition to that, we provide evidence that our model generalizes well in the task of EEG sleep stage segmentation.
翻译:眼视信息的收集为人类认知、健康和行为的许多关键方面提供了一个窗口。此外,许多神经科学研究补充了通过电脑物理学提供的高时间分辨率和神经生理标记从眼睛跟踪获得的行为信息。一个重要的跟踪软件处理步骤是将连续数据流分割成与眼睛跟踪应用相关的事件,如分级、固定和闪烁。这里,我们引入了时间序列分解的新框架,即时间序列分解框架,生成不需额外记录的眼睛跟踪模式且仅依赖EEEG数据而生成的眼事件探测器。我们的端到端深学习框架将计算机视野的最新进展带到EEG数据的时间序列分解的前端。DETR时间在通过不同的眼睛跟踪实验模式探测眼球事件方面达到最新表现。此外,我们还提供证据,证明我们的模型在EG睡眠阶段分解任务中非常全面。