Recently, neural networks have been widely applied for solving partial differential equations (PDEs). Although such methods have been proven remarkably successful on practical engineering problems, they have not been shown, theoretically or empirically, to converge to the underlying PDE solution with arbitrarily high accuracy. The primary difficulty lies in solving the highly non-convex optimization problems resulting from the neural network discretization, which are difficult to treat both theoretically and practically. It is our goal in this work to take a step toward remedying this. For this purpose, we develop a novel greedy training algorithm for shallow neural networks. Our method is applicable to both the variational formulation of the PDE and also to the residual minimization formulation pioneered by physics informed neural networks (PINNs). We analyze the method and obtain a priori error bounds when solving PDEs from the function class defined by shallow networks, which rigorously establishes the convergence of the method as the network size increases. Finally, we test the algorithm on several benchmark examples, including high dimensional PDEs, to confirm the theoretical convergence rate. Although the method is expensive relative to traditional approaches such as finite element methods, we view this work as a proof of concept for neural network-based methods, which shows that numerical methods based upon neural networks can be shown to rigorously converge.


翻译:最近,神经网络被广泛应用于解决部分差异方程式(PDEs ) 。 虽然这些方法在实际工程问题上被证明非常成功,但从理论上或经验上都未能证明这些方法在理论上或经验上都与PDE基本解决方案相融合,其任意性极高的精确度高。主要困难在于解决由神经网络分解产生的高度非电解优化问题,这些问题在理论上和实际上都难以处理。我们在此工作中的目标是为纠正这一问题迈出一步。为此目的,我们为浅神经网络开发了一种新的贪婪培训算法。虽然我们的方法既适用于PDE的变异性配方,也适用于物理知情神经网络(PINNS)所开创的剩余最小化配方。我们分析该方法,并在从浅网络界定的功能类别中解析PDE时获得先验误,严格地确定方法的趋近,因为网络规模增大。最后,我们用几个基准示例测试算法,包括高维度PDEs,以证实理论趋同率。尽管我们的方法对于诸如定质元素方法等传统方法来说费用很高,但我们将这一方法视为基于稳定的网络的趋同方法,我们所展示的一致的方法可以证明。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2018年9月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月23日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2018年9月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员