This article describes an R package bqror that estimates Bayesian quantile regression for ordinal models introduced in \citet{Rahman-2016}. The paper classifies ordinal models into two types and offers two computationally efficient, yet simple, MCMC algorithms for estimating ordinal quantile regression. The generic ordinal model with more than 3 outcomes (labeled $OR_{I}$ model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings algorithm. Whereas an ordinal model with exactly 3 outcomes (labeled $OR_{II}$ model) is estimated using Gibbs sampling only. In line with the Bayesian literature, we suggest using marginal likelihood for comparing alternative quantile regression models and explain how to calculate the same. The models and their estimation procedures are illustrated via multiple simulation studies and implemented in the two applications presented in \citet{Rahman-2016}. The article also describes several other functions contained within the bqror package, which are necessary for estimation, inference, and assessing model fit.


翻译:本文描述一个 R 包 bqror, 估计 Bayesian 千分位回归在\ citet{Rahman-2016} 中引入的正统模型。 本文将正统模型分为两种类型, 提供了两种计算效率高但简单、 MCMC算法, 用于估算二次夸度回归。 具有超过 3 个结果的通用正统模型( 标为 $OR ⁇ I} 美元 模型) 是通过 Gibbbs 抽样和大都会- 霍斯算法的组合来估计的。 而仅用 Gibbs 样本来估计3 个结果的正本模型( 标为 $OR ⁇ II} 美元 模型 ) 。 根据 Bayes 文献, 我们建议使用边际可能性来比较可选择的微量位回归模型, 并解释如何计算相同。 这些模型及其估计程序通过多次模拟研究加以说明, 并在\ citet{Rahman-2016} 中提出的两个应用中实施 。 文章还描述了 bqror 包中包含的其他功能, 这些功能对于估计、 和评估模型是否合适是必要的。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员