In this study, we develop a novel estimation method for quantile treatment effects (QTE) under rank invariance and rank stationarity assumptions. Ishihara (2020) explores identification of the nonseparable panel data model under these assumptions and proposes a parametric estimation based on the minimum distance method. However, when the dimensionality of the covariates is large, the minimum distance estimation using this process is computationally demanding. To overcome this problem, we propose a two-step estimation method based on the quantile regression and minimum distance methods. We then show the uniform asymptotic properties of our estimator and the validity of the nonparametric bootstrap. The Monte Carlo studies indicate that our estimator performs well in finite samples. Finally, we present two empirical illustrations, to estimate the distributional effects of insurance provision on household production and TV watching on child cognitive development.
翻译:在本研究中,我们根据等级差和等级固定性假设,为四分位处理效应(QTE)开发了一种新的估计方法。石原(2020年)根据这些假设,探索了不可分离的小组数据模型,并根据最低距离方法提出了参数估计。然而,当共变体的维度很大时,使用这一工艺的最低距离估计要求计算出来。为了克服这一问题,我们建议了基于四分位回归和最低距离方法的两步估计方法。然后,我们展示了我们的估测器的统一性、不对称靴子的可靠性。蒙特卡洛研究显示,我们的估测器在有限的样本中表现良好。最后,我们提出两个实验性说明,以估计保险条款对家庭生产的分配影响和电视观察儿童认知发育情况。