Mobility, power, and price points often dictate that robots do not have sufficient computing power on board to run contemporary robot algorithms at desired rates. Cloud computing providers such as AWS, GCP, and Azure offer immense computing power on demand, but tapping into that power from a robot is non-trivial. We present FogROS2, an open-source platform to facilitate cloud and fog robotics that is compatible with the emerging Robot Operating System 2 (ROS 2) standard. FogROS2 is completely redesigned and distinct from its predecessor FogROS1 in 9 ways, and has lower latency, overhead, and startup times; improved usability, and additional automation, such as region and computer type selection. Additionally, FogROS2 was added to the official distribution of ROS 2, gaining performance, timing, and additional improvements associated with ROS 2. In examples, FogROS2 reduces SLAM latency by 50 %, reduces grasp planning time from 14 s to 1.2 s, and speeds up motion planning 28x. When compared to FogROS1, FogROS2 reduces network utilization by up to 3.8x, improves startup time by 63 %, and network round-trip latency by 97 % for images using video compression. The source code, examples, and documentation for FogROS2 are available at https://github.com/BerkeleyAutomation/FogROS2, and is available through the official ROS 2 repository at https://index.ros.org/p/fogros2/


翻译:移动性、电力和价格点往往意味着机器人机上没有足够的计算能力来按预期速度运行当代机器人算法。 AWS、 GCP 和 Azure 等云计算提供者根据需求提供巨大的计算能力,但从机器人中提取这种能力是非三重的。 我们展示了FogROS2, 一个开放源码平台, 以便利云雾机器人, 这个平台与新兴的机器人操作系统2 (ROS 2) 标准兼容。 FogROS2 完全重新设计, 与它的前身 FogROS1 以9种方式区别开来, 并具有较低的延度、 管理费和启动时间; 提高可用性和额外的自动化, 如区域和计算机类型选择等。 此外, FogROS2 被添加到ROS 2的正式分配中, 提高性能、 时间和时间上的改进。 FogROS 2 将 SalMLOLO 的定位时间从14 s 到1.2 s, 加快运动规划 28x。 与FO1 相比, FogROS2 将网络的利用率降低到3.LO2, 格式的版本/ 格式文件在3.xxx 上, 25/ 版本/ 。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月30日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员