Natural language is one of the most intuitive ways to express human intent. However, translating instructions and commands towards robotic motion generation, and deployment in the real world, is far from being an easy task. Indeed, combining robotic's inherent low-level geometric and kinodynamic constraints with human's high-level semantic information reinvigorates and raises new challenges to the task-design problem -- typically leading to task or hardware specific solutions with a static set of action targets and commands. This work instead proposes a flexible language-based framework that allows to modify generic 3D robotic trajectories using language commands with reduced constraints about prior task or robot information. By taking advantage of pre-trained language models, we employ an auto-regressive transformer to map natural language inputs and contextual images into changes in 3D trajectories. We show through simulations and real-life experiments that the model can successfully follow human intent, modifying the shape and speed of trajectories for multiple robotic platforms and contexts. This study takes a step into building large pre-trained foundational models for robotics and shows how such models can create more intuitive and flexible interactions between human and machines. Codebase available at: https://github.com/arthurfenderbucker/NL_trajectory_reshaper.
翻译:自然语言是表达人类意图的最直观的方式之一。 然而, 将指令和指令翻译为机器人动作生成和在现实世界中的部署, 远不是一件容易的任务。 事实上, 将机器人固有的低水平几何和近亲动力限制与人类高层语义信息相结合, 给任务设计问题带来了新的挑战 -- -- 通常导致任务设计或硬件特定解决方案, 并有一套静态的行动目标和命令。 这项工作提议了一个灵活的语言框架, 允许用语言指令修改通用的 3D 机器人轨道, 使用语言指令, 减少对先前任务或机器人信息的限制。 我们利用预先培训的语言模型, 使用自动反向变异变异器来绘制自然语言输入和背景图像的地图, 将其转化为3D 轨迹。 我们通过模拟和现实实验显示, 模型可以成功遵循人类的意向, 改变多个机器人平台和环境的轨迹的形状和速度。 这项研究将逐步建立大型经过预先培训的基础模型, 并展示这些模型如何在机器人/ 成熟的机体/ 机制/ 准则 和灵活互动 。