Recent developments in statistical regression methodology establish flexible relationships between all parameters of the response distribution and the covariates. This shift away from pure mean regression is just one example and is further intensified by conditional transformation models (CTMs). They aim to infer the entire conditional distribution directly by applying a transformation function that transforms the response conditionally on a set of covariates towards a simple log-concave reference distribution. Thus, CTMs allow not only variance, kurtosis and skewness but the complete conditional distribution function to depend on the explanatory variables. In this article, we propose a Bayesian notion of conditional transformation models (BCTM) for discrete and continuous responses in the presence of random censoring. Rather than relying on simple polynomials, we implement a spline-based parametrization for monotonic effects that are supplemented with smoothness penalties. Furthermore, we are able to benefit from the Bayesian paradigm directly via easily obtainable credible intervals and other quantities without relying on large sample approximations. A simulation study demonstrates the competitiveness of our approach against its likelihood-based counterpart, most likely transformations (MLTs) and Bayesian additive models of location, scale and shape (BAMLSS). Three applications illustrate the versatility of the BCTMs in problems involving real world data.


翻译:统计回归方法的近期发展在反应分布的所有参数和共变之间建立了灵活的关系。这种从纯平均回归的转变只是一个例子,并且通过有条件转换模式(CTMs)进一步强化。它们的目的是通过应用一种转换功能直接推算整个有条件分布,这种转换功能使反应以一组同化成简单的日志平衡参考分布为条件。因此,CTMs不仅允许差异、质化和偏差,而且完全的有条件分布功能取决于解释性变量。在本条中,我们提出了一个在随机审查的情况下对离散和连续反应采用有条件回归模式的巴伊西亚概念。我们不是依靠简单的多面体模型,而是对单一效应实行基于星系的配给,并辅之以平滑度罚款。此外,通过易于获取的可靠间隔和其他数量,我们可以直接从巴伊斯模式中受益,而不必依赖大样本的近似值。在随机审查的情况下,我们提出了一种有条件转换模式(BCTMMS)的竞争力。我们不是依靠简单的多面模型,而是采用基于单面模型(MLTS)和BAF格式的模型。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
71+阅读 · 2020年10月24日
专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月22日
Tree boosting for learning probability measures
Arxiv
0+阅读 · 2021年2月18日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
71+阅读 · 2020年10月24日
专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员