We advocate the development of a discipline of interacting with and extracting information from models, both mathematical (e.g. game-theoretic ones) and computational (e.g. agent-based models). We outline some directions for the development of a such a discipline: - the development of logical frameworks for the systematic formal specification of stylized facts and social mechanisms in (mathematical and computational) social science. Such frameworks would bring to attention new issues, such as phase transitions, i.e. dramatical changes in the validity of the stylized facts beyond some critical values in parameter space. We argue that such statements are useful for those logical frameworks describing properties of ABM. - the adaptation of tools from the theory of reactive systems (such as bisimulation) to obtain practically relevant notions of two systems "having the same behavior". - the systematic development of an adversarial theory of model perturbations, that investigates the robustness of conclusions derived from models of social behavior to variations in several features of the social dynamics. These may include: activation order, the underlying social network, individual agent behavior.
翻译:我们主张发展与模型(数学(例如游戏理论学)和计算模型(例如代理人模型)和计算模型(例如游戏理论学)进行互动并从中提取信息的学科。我们为这种学科的发展提出一些方向:为系统正式确定(数学和计算学)社会科学(数学和计算学)中的形式化事实和社会机制而制定逻辑框架。这种框架将引起人们注意一些新问题,例如阶段过渡,即超越参数空间中某些关键值而使结构化事实的有效性发生巨大变化。我们争辩说,这些声明对于描述反弹道导弹特性的逻辑框架是有用的。从反应系统理论(例如鼓励)中改编工具,以获得“具有相同行为”的两个系统的实际相关概念。——系统发展对模型渗透论的对抗理论,以调查从社会行为模型得出的结论的稳健性,以及社会动态的若干特征的变化。这些可能包括:激活秩序、基本的社会网络、个人代理行为。