We consider non-cooperative binding, so-called 'temperature 1', in deterministic or directed (called here confluent) tile self-assembly systems in two dimensions and show a necessary and sufficient condition for such system to have an ultimately periodic assembly path. We prove that an infinite maximal assembly has an ultimately periodic assembly path if and only if it contains an infinite assembly path that does not intersect a periodic path in the Z2 grid. Moreover we show that every infinite assembly must satisfy this condition, and therefore, contains an ultimately periodic path. This result is obtained through a super-position and a combination of two paths that produce a new path with desired properties, a technique that we call co-grow of two paths. The paper is an updated and improved version of the first part of arXiv 1901.08575.
翻译:我们认为,在两个维度的确定或定向(此处称为“可容性”)自组成系统中,“温度1”是非合作性的约束性、所谓“温度1”的,在两个维度的确定性或定向(此处称为“可容性”)自组成系统中,并显示出使这种系统最终有一个周期性组装路径的一个必要和充分的条件。我们证明,无限最大组装有一个最终周期性组装路径,只要它包含一个无限的组装路径,而该路径不会在Z2 格网中的周期性路径之间相互交叉。此外,我们还表明,每个无限组装必须满足这一条件,从而包含一个最终的周期性路径。这一结果通过一个超级位置和两个路径的组合而获得,它们产生了一条具有理想特性的新路径,一种我们称之为双轨联产的技术。该文件是对anXiv 1901.08575号Arxiv 的第一部分进行更新和改进的版本。