In this paper, we prove that over the finite field $\mathbb{Z}_p$, solving unit-weight Laplacian linear systems is as hard as solving general linear systems. The proof includes the following two reductions. (1) Reduce solving a general linear system $\mathbf{A}$ to solving a weighted Laplacian system $\mathbf{L}$ of size $O(\mathrm{nnz}(\mathbf{A}))$. (2) Reduce solving a weighted Laplacian system $\mathbf{L}$ to solving a unit-weight Laplacian system $\bar{\mathbf{L}}$ of size $O\left(\mathrm{nnz}(\mathbf{L})\log^2p/\log\log p\right)$.
翻译:在本文中,我们证明,在有限的字段中,解决单位重量的拉普拉西亚线性系统与解决一般线性系统一样困难。证据包括以下两个削减。 (1) 减少解决普通线性系统所需的美元=mathbf{A}美元,以解决一个重量为O(\mathrb{nnz}(\mathbf{A})美元(美元)的加权拉普拉西亚系统。 (2) 减少解决加权的拉普拉西亚系统所需的美元=mathb{L}美元,解决单位重量的拉普拉西亚系统所需的美元=\bar\mathb{L}(美元)美元,解决大小为Oleft(\mathrm{nnnz}(\mathbf{L})\log%2p/\log\log\right)$。