We study algorithmic problems that belong to the complexity class of the existential theory of the reals (ER). A problem is ER-complete if it is as hard as the problem ETR and if it can be written as an ETR formula. Traditionally, these problems are studied in the real RAM, a model of computation that assumes that the storage and comparison of real-valued numbers can be done in constant space and time, with infinite precision. The complexity class ER is often called a real RAM analogue of NP, since the problem ETR can be viewed as the real-valued variant of SAT. In this paper we prove a real RAM analogue to the Cook-Levin theorem which shows that ER membership is equivalent to having a verification algorithm that runs in polynomial-time on a real RAM. This gives an easy proof of ER-membership, as verification algorithms on a real RAM are much more versatile than ETR-formulas. We use this result to construct a framework to study ER-complete problems under smoothed analysis. We show that for a wide class of ER-complete problems, its witness can be represented with logarithmic input-precision by using smoothed analysis on its real RAM verification algorithm. This shows in a formal way that the boundary between NP and ER (formed by inputs whose solution witness needs high input-precision) consists of contrived input. We apply our framework to well-studied ER-complete recognition problems which have the exponential bit phenomenon such as the recognition of realizable order types or the Steinitz problem in fixed dimension.
翻译:我们研究的是属于真实(ER)存在理论复杂程度的算法问题。 如果问题与 ETR 问题一样复杂,而且可以写成 ETR 公式,那么问题就是 ER 。 传统上,这些问题是在真实的 RAM 中研究的, 这是一种计算模型, 假设真实价值数字的存储和比较可以在固定的时间和时间里进行, 并且具有无限精确性。 复杂的 ER 通常被称为 NP 真实的 RA 模拟 。 因为 ETR 问题可以被看作 SAT 的真正价值变异。 在本文中, 我们证明 Cook- Levin 理论是真实的 RAM 模拟, 这表明ER 成员等同于一个核查算法, 在真实的 RAM 时间和时间上运行。 这可以很容易地证明 ER, 因为真实的 ER 值 值 值 值 值 值 的 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 。 我们使用这一结果 来构建一个框架来研究 ER- silentrialticri 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 的 。 我们 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值