In the stochastic population protocol model, we are given a connected graph with $n$ nodes, and in every time step, a scheduler samples an edge of the graph uniformly at random and the nodes connected by this edge interact. A fundamental task in this model is stable leader election, in which all nodes start in an identical state and the aim is to reach a configuration in which (1) exactly one node is elected as leader and (2) this node remains as the unique leader no matter what sequence of interactions follows. On cliques, the complexity of this problem has recently been settled: time-optimal protocols stabilize in $\Theta(n \log n)$ expected steps using $\Theta(\log \log n)$ states, whereas protocols that use $O(1)$ states require $\Theta(n^2)$ expected steps. In this work, we investigate the complexity of stable leader election on general graphs. We provide the first non-trivial time lower bounds for leader election on general graphs, showing that, when moving beyond cliques, the complexity landscape of leader election becomes very diverse: the time required to elect a leader can range from $O(1)$ to $\Theta(n^3)$ expected steps. On the upper bound side, we first observe that there exists a protocol that is time-optimal on many graph families, but uses polynomially-many states. In contrast, we give a near-time-optimal protocol that uses only $O(\log^2n)$ states that is at most a factor $\log n$ slower. Finally, we show that the constant-state protocol of Beauquier et al. [OPODIS 2013] is at most a factor $n \log n$ slower than the fast polynomial-state protocol. Moreover, among constant-state protocols, this protocol has near-optimal average case complexity on dense random graphs.


翻译:在调查人口协议模式中,我们得到一个与美元节点相连的图表,并且在每一个时间步骤中,一个调度器都以随机和此边缘连接的节点互动来抽样显示图表的边缘。模型中的一个基本任务是稳定的领导人选举,所有节点都以相同的状态开始,目的是达到以下配置:(1) 完全选举出一个节点作为领导者, (2) 这个节点仍然是独特的领导者, 不论互动的顺序如何。 在 cliques上, 这个问题的复杂性最近已经得到解决: 时间- 最佳协议稳定在$- 美元(n\ log n) 和 美元(n) 的节点。 这个模型中, 使用美元(n) 的节点开始于一个相同的状态, 而使用美元(n2) 协议的节点是要达到一个配置。 在一般图表上, 我们提供了第一个非三次更低的节点, 显示, 当我们从冰点开始, 最复杂的领导人选举的节点会变得非常多样化。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员