This paper presents a novel low-cost method to predict: i) the vascular age of a healthy young person, ii) whether or not a person is a smoker, using only the lead-I of the electrocardiogram (ECG). We begin by collecting (lead-I) ECG data from 42 healthy subjects (male, female, smoker, non-smoker) aged 18 to 30 years, using our custom-built low-cost single-lead ECG module, and anthropometric data, e.g., body mass index, smoking status, blood pressure etc. Under our proposed method, we first pre-process our dataset by denoising the ECG traces, followed by baseline drift removal, followed by z-score normalization. Next, we divide ECG traces into overlapping segments of five-second duration, which leads to a 145-fold increase in the size of the dataset. We then feed our dataset to a number of machine learning models, a 1D convolutional neural network, a multi-layer perceptron (MLP), and ResNet18 transfer learning model. For vascular ageing prediction problem, Random Forest method outperforms all other methods with an R2 score of 0.99, and mean squared error of 0.07. For the binary classification problem that aims to differentiate between a smoker and a non-smoker, XGBoost method stands out with an accuracy of 96.5%. Finally, for the 4-class classification problem that aims to differentiate between male smoker, female smoker, male non-smoker, and female non-smoker, MLP method achieves the best accuracy of 97.5%. This work is aligned with the sustainable development goals of the United Nations which aim to provide low-cost but quality healthcare solutions to the unprivileged population.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员