Significant wave height forecasting is a key problem in ocean data analytics. Predicting the significant wave height is crucial for estimating the energy production from waves. Moreover, the timely prediction of large waves is important to ensure the safety of maritime operations, e.g. passage of vessels. We frame the task of predicting extreme values of significant wave height as an exceedance probability forecasting problem. Accordingly, we aim at estimating the probability that the significant wave height will exceed a predefined threshold. This task is usually solved using a probabilistic binary classification model. Instead, we propose a novel approach based on a forecasting model. The method leverages the forecasts for the upcoming observations to estimate the exceedance probability according to the cumulative distribution function. We carried out experiments using data from a buoy placed in the coast of Halifax, Canada. The results suggest that the proposed methodology is better than state-of-the-art approaches for exceedance probability forecasting.
翻译:重要浪高预测是海洋数据分析中的一个关键问题。 预测大浪高度对于估计海浪产生的能源量至关重要。 此外, 及时预测大浪对于确保海上作业的安全非常重要, 例如船只的通过。 我们把预测大浪高度的极端值的任务设定为超常概率预测问题。 因此, 我们的目标是估计大浪高度将超过预先确定的阈值的概率。 这项任务通常使用一种概率二进制分类模型来解决。 相反, 我们提出一种基于预测模型的新办法。 该方法利用即将进行的观测的预测来根据累积分布功能估计超常概率。 我们利用放置在加拿大哈利法克斯海岸的浮标数据进行了实验。 结果显示,拟议的方法比超常概率预测的先进方法要好。