For a Bayesian, real-time forecasting with the posterior predictive distribution can be challenging for a variety of time series models. First, estimating the parameters of a time series model can be difficult with sample-based approaches when the model's likelihood is intractable and/or when the data set being used is large. Second, once samples from a parameter posterior are obtained on a fixed window of data, it is not clear how they will be used to generate forecasts, nor is it clear how, and in what sense, they will be ``updated" as interest shifts to newer posteriors as new data arrive. This paper provides a comparison of the sample-based forecasting algorithms that are available for Bayesians interested in real-time forecasting with nonlinear/non-Gaussian state space models. An applied analysis of financial returns is provided using a well-established stochastic volatility model. The principal aim of this paper is to provide guidance on how to select one of these algorithms, and to describe a variety of benefits and pitfalls associated with each approach.
翻译:对于贝叶西亚人来说,对一系列时间序列模型来说,利用事后预测分布进行实时预测可能具有挑战性。 首先,当模型的可能性难以解决和(或)正在使用的数据集巨大时,对时间序列模型参数的参数参数参数参数参数参数参数参数参数的参数值参数值参数值的参数值的参数值进行估算可能难以采用。 其次,一旦在固定的数据窗口中获得参数参数子值的样本,则不清楚如何利用这些参数来生成预测,也不清楚随着新的数据到来,这些参数将如何和在什么意义上“更新”。 本文比较了对实时预测感兴趣的巴伊西亚人可利用的基于样本的预测算法与非线性/非加萨国家空间模型。 使用一个完善的随机性波动模型对财务回报进行了应用分析。 本文的主要目的是指导如何选择这些算法,并描述与每种方法相关的各种好处和陷阱。