We consider the problem of designing deterministic graph algorithms for the model of Massively Parallel Computation (MPC) that improve with the sparsity of the input graph, as measured by the notion of arboricity. For the problems of maximal independent set (MIS), maximal matching (MM), and vertex coloring, we improve the state of the art as follows. Let $\lambda$ denote the arboricity of the $n$-node input graph with maximum degree $\Delta$. MIS and MM: We develop a deterministic low-space MPC algorithm that reduces the maximum degree to $poly(\lambda)$ in $O(\log \log n)$ rounds, improving and simplifying the randomized $O(\log \log n)$-round $poly(\max(\lambda, \log n))$-degree reduction of Ghaffari, Grunau, Jin [DISC'20]. Our approach when combined with the state-of-the-art $O(\log \Delta + \log \log n)$-round algorithm by Czumaj, Davies, Parter [SPAA'20, TALG'21] leads to an improved deterministic round complexity of $O(\log \lambda + \log \log n)$ for MIS and MM in low-space MPC. We also extend above MIS and MM algorithms to work with linear global memory. Specifically, we show that both problems can be solved in deterministic time $O(\min(\log n, \log \lambda \cdot \log \log n))$, and even in $O(\log \log n)$ time for graphs with arboricity at most $\log^{O(1)} \log n$. In this setting, only a $O(\log^2 \log n)$-running time bound for trees was known due to Latypov and Uitto [ArXiv'21]. Vertex Coloring: We present a $O(1)$-round deterministic algorithm for the problem of $O(\lambda)$-coloring in linear-memory MPC with relaxed global memory of $n \cdot poly(\lambda)$ that solves the problem after just one single graph partitioning step. This matches the state-of-the-art randomized round complexity by Ghaffari and Sayyadi [ICALP'19] and improves upon the deterministic $O(\lambda^{\epsilon})$-round algorithm by Barenboim and Khazanov [CSR'18].


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员