We consider the problem of positive-semidefinite continuation: extending a partially specified covariance kernel from a subdomain $\Omega$ of a rectangular domain $I\times I$ to a covariance kernel on the entire domain $I\times I$. For a broad class of domains $\Omega$ called \emph{serrated domains}, we are able to present a complete theory. Namely, we demonstrate that a canonical completion always exists and can be explicitly constructed. We characterise all possible completions as suitable perturbations of the canonical completion, and determine necessary and sufficient conditions for a unique completion to exist. We interpret the canonical completion via the graphical model structure it induces on the associated Gaussian process. Furthermore, we show how the estimation of the canonical completion reduces to the solution of a system of linear statistical inverse problems in the space of Hilbert-Schmidt operators, and derive rates of convergence. We conclude by providing extensions of our theory to more general forms of domains, and by demonstrating how our results can be used to construct covariance estimators from sample path fragments of the associated stochastic process. Our results are illustrated numerically by way of a simulation study and a real example.
翻译:我们考虑的是正成色的继续问题:将部分指定的共变内核从一个子域$\ Omega$ 的矩形域的子数据 $I_time I$ 美元扩大到整个域的共变内核 $I_time I$。对于一个称为 emph{serated 域的广类域 $\Omega$\Omega$\ emph{serated 域},我们能够提出一个完整的理论。也就是说,我们证明一个班形的完成始终存在,并且可以明确构建。我们把所有可能的完成描述成一个适合的银形完成的扰动,并确定独特完成的必要和充分条件。我们通过图形模型结构来解释整个域内的共变的完成。我们通过相关的高斯进程来解读。此外,我们展示了对卡纳美学完成的估算如何降低到解决希尔伯特-施密特操作者空间线性统计反问题的系统,并得出趋同率。我们通过提供我们理论的扩展到更笼统的域表态形式,并通过展示我们模拟的模型模型模拟结果是如何用来构建数字过程。