The rapid advancement of data science and artificial intelligence has influenced physics in numerous ways, including the application of Bayesian inference. Our group has proposed Bayesian measurement, a framework that applies Bayesian inference to measurement science and is applicable across various natural sciences. This framework enables the determination of posterior probability distributions for system parameters, model selection, and the integration of multiple measurement datasets. However, a theoretical framework to address fluctuations in these results due to finite measurement data (N) is still needed. In this paper, we suggest a mesoscopic theoretical framework for the components of Bayesian measurement-parameter estimation, model selection, and Bayesian integration-within the mesoscopic region where (N) is finite. We develop a solvable theory for linear regression with Gaussian noise, which is practical for real-world measurements and as an approximation for nonlinear models with large (N). By utilizing mesoscopic Gaussian and chi-squared distributions, we aim to analytically evaluate the three components of Bayesian measurement. Our results offer a novel approach to understanding fluctuations in Bayesian measurement outcomes.
翻译:暂无翻译