Approximation fixpoint theory (AFT) provides an algebraic framework for the study of fixpoints of operators on bilattices and has found its applications in characterizing semantics for various classes of logic programs and nonmonotonic languages. In this paper, we show one more application of this kind: the alternating fixpoint operator by Knorr et al. for the study of the well-founded semantics for hybrid MKNF knowledge bases is in fact an approximator of AFT in disguise, which, thanks to the power of abstraction of AFT, characterizes not only the well-founded semantics but also two-valued as well as three-valued semantics for hybrid MKNF knowledge bases. Furthermore, we show an improved approximator for these knowledge bases, of which the least stable fixpoint is information richer than the one formulated from Knorr et al.'s construction. This leads to an improved computation for the well-founded semantics. This work is built on an extension of AFT that supports consistent as well as inconsistent pairs in the induced product bilattice, to deal with inconsistencies that arise in the context of hybrid MKNF knowledge bases. This part of the work can be considered generalizing the original AFT from symmetric approximators to arbitrary approximators.


翻译:近似点定点理论( AFT) 为两极理论操作者固定点的研究提供了一个代数框架, 并发现其应用为各类逻辑程序和非调子语言的语义特征。 在本文中, 我们展示了另一种应用: Knorr 等人的交替固定点操作者, 用于研究混合MKKNF知识基础的有根有根的语义, 事实上, 是一个伪装的AFT 的代数工具, 由于AFT的抽象力量, 它不仅描述有根有根有根的语义, 而且还为混合的MKNFF知识基础具有两种价值和三种价值的语义。 此外, 我们展示了这些知识基础的更接近性工具, 其中最不稳定的定点比从Knor 等人的构造所制成的语义更丰富。 这导致对有根有根的语义的语义学计算方法得到改进。 这项工作建立在AFTFT的延伸上, 支持该导导出产品双基基础的一致和不一面的对立。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
最新《图神经网络知识图谱补全》综述论文
专知会员服务
156+阅读 · 2020年7月29日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
66+阅读 · 2020年7月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员