Generalized approximate message passing (GAMP) is a promising technique for unknown signal reconstruction of generalized linear models (GLM). However, it requires that the transformation matrix has independent and identically distributed (IID) entries. In this context, generalized vector AMP (GVAMP) is proposed for general unitarily-invariant transformation matrices but it has a high-complexity matrix inverse. To this end, we propose a universal generalized memory AMP (GMAMP) framework including the existing orthogonal AMP/VAMP, GVAMP, and memory AMP (MAMP) as special instances. Due to the characteristics that local processors are all memory, GMAMP requires stricter orthogonality to guarantee the asymptotic IID Gaussianity and state evolution. To satisfy such orthogonality, local orthogonal memory estimators are established. The GMAMP framework provides a principle toward building new advanced AMP-type algorithms. As an example, we construct a Bayes-optimal GMAMP (BO-GMAMP), which uses a low-complexity memory linear estimator to suppress the linear interference, and thus its complexity is comparable to GAMP. Furthermore, we prove that for unitarily-invariant transformation matrices, BO-GMAMP achieves the replica minimum (i.e., Bayes-optimal) MSE if it has a unique fixed point.
翻译:通用一般信息传递(GAMP)是通用线性模型(GLM)的未知信号重建(GGLM)的一种有希望的技术。然而,它要求变异矩阵具有独立和相同分布(IID)条目的特性。在这方面,为一般的单异式变换矩阵提议通用矢量AMP(GVAMP),但有一个高度复杂的矩阵。为此,我们提议一个通用记忆AMP(GMAMMP)框架,包括现有的正方形 AMP/VAMP、GVAMP和记忆AMP(MAMP),作为特例。由于当地处理器是所有记忆的特性,GMAMP需要更严格或多级的特性,以保障无正态的 IID 测量和状态演变。为了满足这种或分性、本地或正态的记忆估计器。GMAMP(GMMP)框架为建设新的高级高级AMP型算法提供了一条原则。举例说,我们建造了一种巴耶-最佳GMAMP(B-GAMMP)(BO-G-GAMMP),它使用一种可比较的缩略性缩缩微的缩微的缩略图。