This paper shows how to adapt several simple and classical sampling-based algorithms for the $k$-means problem to the setting with outliers. Recently, Bhaskara et al. (NeurIPS 2019) showed how to adapt the classical $k$-means++ algorithm to the setting with outliers. However, their algorithm needs to output $O(\log (k) \cdot z)$ outliers, where $z$ is the number of true outliers, to match the $O(\log k)$-approximation guarantee of $k$-means++. In this paper, we build on their ideas and show how to adapt several sequential and distributed $k$-means algorithms to the setting with outliers, but with substantially stronger theoretical guarantees: our algorithms output $(1+\varepsilon)z$ outliers while achieving an $O(1 / \varepsilon)$-approximation to the objective function. In the sequential world, we achieve this by adapting a recent algorithm of Lattanzi and Sohler (ICML 2019). In the distributed setting, we adapt a simple algorithm of Guha et al. (IEEE Trans. Know. and Data Engineering 2003) and the popular $k$-means$\|$ of Bahmani et al. (PVLDB 2012). A theoretical application of our techniques is an algorithm with running time $\tilde{O}(nk^2/z)$ that achieves an $O(1)$-approximation to the objective function while outputting $O(z)$ outliers, assuming $k \ll z \ll n$. This is complemented with a matching lower bound of $\Omega(nk^2/z)$ for this problem in the oracle model.


翻译:本文展示了如何将一些简单和经典的基于抽样的算法用于 $k$ 的 美元( log2/ k) 工具问题, 以适应外端的设置。 最近, Bhaskara 等人 (NeurIPS 2019) 展示了如何将古典的 $k$ 平均值+ 的算法适应到 外端的设置。 然而, 他们的算法需要输出 $( log (k)\ cdocktz) 值的外端值, 真正的外端值是 $( $( log2/ k) 美元), 来匹配美元( 美元) 美元( 美元) 和 美元( 美元) 美元( 美元) 和 美元( 美元) 美元( 美元) 和 美元( 美元) 美元( 美元) 美元( 美元) 。 在相继世界中, 我们通过调整一个最新的 美元( 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元) ( 美元) 美元( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( ) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( ) ( ) ( ) ( ) ( 美元) ( ) ( 美元) ( 美元) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员