Gaussian graphical models (GGMs) are well-established tools for probabilistic exploration of dependence structures using precision matrices. We develop a Bayesian method to incorporate covariate information in this GGMs setup in a nonlinear seemingly unrelated regression framework. We propose a joint predictor and graph selection model and develop an efficient collapsed Gibbs sampler algorithm to search the joint model space. Furthermore, we investigate its theoretical variable selection properties. We demonstrate our method on a variety of simulated data, concluding with a real data set from the TCPA project.
翻译:Gausian 图形模型(GGMS) 是使用精确矩阵对依赖结构进行概率性探索的既定工具。 我们开发了一种巴伊西亚方法, 将这一 GGMs 设置的共变信息纳入一个非线性似乎无关的回归框架。 我们提出一个联合预测和图形选择模型, 并开发一个高效崩溃的 Gibbs 样本算法, 以搜索联合模型空间 。 此外, 我们调查其理论变量选择属性 。 我们用各种模拟数据演示了我们的方法, 并以来自 TCPA 项目的真实数据集结尾 。