Hybrid ensemble, an essential branch of ensembles, has flourished in numerous machine learning problems, especially regression. Several studies have confirmed the importance of diversity; however, previous ensembles only consider diversity in the sub-model training stage, with limited improvement compared to single models. In contrast, this study focuses on the sub-model combination stage of the ensemble. It solves a non-convex optimization problem using an interior-point filtering linear-search algorithm to select and weight sub-models from a heterogeneous model pool automatically. This optimization problem innovatively incorporates negative correlation learning as a penalty term. Thus, a diverse model subset can be selected. Experimental results show that the approach outperforms single model and overcomes the instability of the models and parameters. Compared to bagging and stacking without model diversity, our method stands out more and confirms the importance of diversity in the ensemble. Additionally, the performance of our proposed method is better than that of simple and weighted averages, and the variance of the weights is lower and more stable than that of a linear model. Finally, the prediction accuracy can be further improved by fine-tuning the weights using the error inverse weights. In conclusion, the value of this study lies in its ease of use and effectiveness, allowing the hybrid ensemble to embrace both diversity and accuracy.


翻译:混合体是混合体的一个基本分支,它在许多机器学习问题中,特别是倒退问题中蓬勃发展。一些研究证实了多样性的重要性;然而,以前的组合体只考虑次模型培训阶段的多样性,与单一模型相比,改进有限。相比之下,本项研究侧重于组合体的子模型组合阶段。本项研究侧重于组合体的子模型组合阶段。它用内部点过滤线性搜索算法自动解决非组合优化问题,从一个混合模型库中选择和加权子模型。这一优化问题创新地将负面相关学习作为一个惩罚术语纳入。因此,可以选择一个不同的模型子集。实验结果显示,该方法优于单一模型,克服模型和参数的不稳定性。与没有模型多样性的组合和堆叠相比,我们的方法更加突出并证实了多样性的重要性。此外,我们拟议方法的性能优于简单和加权平均值,重量的差异比线性模型的值要低、更稳定。最后,预测的准确度可以通过精确度和精确度研究来改进模型的准确度。在精确度中,通过精确度和精确度的精确度研究来改进其精确度。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
44+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
3+阅读 · 2018年2月22日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员