Congenital heart disease (CHD) is the most common congenital abnormality associated with birth defects in the United States. Despite training efforts and substantial advancement in ultrasound technology over the past years, CHD remains an abnormality that is frequently missed during prenatal ultrasonography. Therefore, computer-aided detection of CHD can play a critical role in prenatal care by improving screening and diagnosis. Since many CHDs involve structural abnormalities, automatic segmentation of anatomical structures is an important step in the analysis of fetal echocardiograms. While existing methods mainly focus on the four-chamber view with a small number of structures, here we present a more comprehensive deep learning segmentation framework covering 14 anatomical structures in both three-vessel trachea and four-chamber views. Specifically, our framework enhances the V-Net with spatial dropout, group normalization, and deep supervision to train a segmentation model that can be applied on both views regardless of abnormalities. By identifying the pitfall of using the Dice loss when some labels are unavailable in some images, this framework integrates information from multiple views and is robust to missing structures due to anatomical anomalies, achieving an average Dice score of 79%.


翻译:遗传性心脏病(CHD)是美国与先天性缺陷有关的最常见的先天性畸形(CHD)是最常见的先天性畸形,与先天性心血管畸形有关。尽管在过去几年中进行了培训,超声波技术也取得了显著进步,但CHD仍然是一种异常现象,产前超声波造影期间经常被忽略。因此,计算机辅助检测CHD能够通过改进筛查和诊断,在产前护理中发挥关键作用。由于许多CHD涉及结构异常,因此解剖结构的自动分解是分析胎儿回声心形图的一个重要步骤。虽然现有方法主要侧重于四合形图象,只有一小部分结构,但这里我们提出了一个更全面的深深层学习分解框架,涵盖三轮气管和四合眼的14个解剖结构。具体地说,我们的框架加强了V-网络,通过空间失学、群体正常化和深入监督来培养分解模式,无论两种观点是否异常,都可以应用。通过确定在有些图象无法使用Dice损失时,这个框架整合了多种观点中的信息,并且具有79分位的失态结构,从而实现了平均的反形结构。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员