We establish some limit theorems for quasi-arithmetic means of random variables. This class of means contains the arithmetic, geometric and harmonic means. Our feature is that the generators of quasi-arithmetic means are allowed to be complex-valued, which makes considerations for quasi-arithmetic means of random variables which could take negative values possible. Our motivation for the limit theorems is finding simple estimators of the parameters of the Cauchy distribution. By applying the limit theorems, we obtain some closed-form unbiased strongly-consistent estimators for the joint of the location and scale parameters of the Cauchy distribution, which are easy to compute and analyze.
翻译:我们为随机变数的准定量手段设定了一定的限值参数。 这一类手段包含算术、几何和调和手段。 我们的特征是,准定量手段的生成者被允许进行复杂的估值, 从而考虑到随机变量的准定量手段, 这可能带来负值。 我们的限值的动机是找到Cauchy分布参数的简单估计符。 通过应用限值, 我们获得了一些封闭式的、不偏袒的、 强烈一致的估测器, 用于合并Cauchy分布的位置和比例参数, 这些参数很容易计算和分析 。