This paper presents a novel task together with a new benchmark for detecting generic, taxonomy-free event boundaries that segment a whole video into chunks. Conventional work in temporal video segmentation and action detection focuses on localizing pre-defined action categories and thus does not scale to generic videos. Cognitive Science has known since last century that humans consistently segment videos into meaningful temporal chunks. This segmentation happens naturally, without pre-defined event categories and without being explicitly asked to do so. Here, we repeat these cognitive experiments on mainstream CV datasets; with our novel annotation guideline which addresses the complexities of taxonomy-free event boundary annotation, we introduce the task of Generic Event Boundary Detection (GEBD) and the new benchmark Kinetics-GEBD. Our Kinetics-GEBD has the largest number of boundaries (e.g. 32 of ActivityNet, 8 of EPIC-Kitchens-100) which are in-the-wild, taxonomy-free, cover generic event change, and respect human perception diversity. We view GEBD as an important stepping stone towards understanding the video as a whole, and believe it has been previously neglected due to a lack of proper task definition and annotations. Through experiment and human study we demonstrate the value of the annotations. Further, we benchmark supervised and un-supervised GEBD approaches on the TAPOS dataset and our Kinetics-GEBD. We release our annotations and baseline codes at CVPR'21 LOVEU Challenge: https://sites.google.com/view/loveucvpr21.
翻译:本文展示了一个新任务, 以及用于检测非常规、 无分类事件界限的新基准, 将整个视频分割成块块。 时间视频分割和行动探测的常规工作侧重于将预定义的行动类别本地化, 因而不比通用视频范围。 自上世纪以来, 认知科学已经知道, 人类始终将视频分割成有意义的时间块。 这种分割自然发生, 没有预定义的事件类别, 也没有明确要求这样做。 在这里, 我们重复了主流 CV 数据集的认知实验; 我们的新说明准则, 解决了无分类事件边界注释的复杂性。 我们引入了通用事件边界探测(GEBD)的任务, 以及新的基尼特- GEBD 基准任务。 我们的 Enticals- GEB 具有最大的界限( 例如, 活动网络 32, ELIC- Kitchens- 100 的 8 ) 。 我们重复了主流 CV 、 无分类- 、 覆盖通用事件变化和尊重人类认知多样性。 我们视 GEOD 是一个重要的基础, 理解普通事件定义, 以及我们先前忽视了视频- 的C 定义 和GEO 定义, 定义, 进一步展示了我们没有了我们的C- 基准 和 。