Deepfake technology is widely used, which has led to serious worries about the authenticity of digital media, making the need for trustworthy deepfake face recognition techniques more urgent than ever. This study employs a resource-effective and transparent cost-sensitive deep learning method to effectively detect deepfake faces in videos. To create a reliable deepfake detection system, four pre-trained Convolutional Neural Network (CNN) models: XceptionNet, InceptionResNetV2, EfficientNetV2S, and EfficientNetV2M were used. FaceForensics++ and CelebDf-V2 as benchmark datasets were used to assess the performance of our method. To efficiently process video data, key frame extraction was used as a feature extraction technique. Our main contribution is to show the models adaptability and effectiveness in correctly identifying deepfake faces in videos. Furthermore, a cost-sensitive neural network method was applied to solve the dataset imbalance issue that arises frequently in deepfake detection. The XceptionNet model on the CelebDf-V2 dataset gave the proposed methodology a 98% accuracy, which was the highest possible whereas, the InceptionResNetV2 model, achieves an accuracy of 94% on the FaceForensics++ dataset. Source Code: https://github.com/Faysal-MD/Unmasking-Deepfake-Faces-from-Videos-An-Explainable-Cost-Sensitive-Deep-Learning-Approach-IEEE2023


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
3D Deep Learning on Medical Images: A Review
Arxiv
13+阅读 · 2020年4月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员