Inverting a Generative Adversarial Network (GAN) facilitates a wide range of image editing tasks using pre-trained generators. Existing methods typically employ the latent space of GANs as the inversion space yet observe the insufficient recovery of spatial details. In this work, we propose to involve the padding space of the generator to complement the latent space with spatial information. Concretely, we replace the constant padding (e.g., usually zeros) used in convolution layers with some instance-aware coefficients. In this way, the inductive bias assumed in the pre-trained model can be appropriately adapted to fit each individual image. Through learning a carefully designed encoder, we manage to improve the inversion quality both qualitatively and quantitatively, outperforming existing alternatives. We then demonstrate that such a space extension barely affects the native GAN manifold, hence we can still reuse the prior knowledge learned by GANs for various downstream applications. Beyond the editing tasks explored in prior arts, our approach allows a more flexible image manipulation, such as the separate control of face contour and facial details, and enables a novel editing manner where users can customize their own manipulations highly efficiently.
翻译:反转基因反向网络(GAN) 有利于使用经过预先训练的发电机进行广泛的图像编辑任务。 现有方法通常使用GAN的潜伏空间作为回转空间,但发现空间细节的恢复不足。 在这项工作中,我们提议让发电机的挂接空间以空间信息补充潜移空空间。 具体地说,我们用某种能见度系数来取代在卷发层使用的常数挂载( 例如,通常为零) 。 这样, 在经过训练的模型中假设的诱导偏差可以适当地适应每个个人图像。 通过仔细设计的编码器,我们设法改进倒置质量和定量质量,优于现有的替代方法。 我们然后表明,这样的空间扩展不会影响原生GAN的多元方法, 因此我们仍可以将GAN所学到的以往知识再用于各种下游应用。 除了在前艺术中探讨的编辑任务外, 我们的方法允许更灵活地调整图像, 如对面部和面部细节进行单独控制, 并使得用户能够以新式的编辑方式使用户能够将自己的操纵定制。