This paper investigates a cognitive unmanned aerial vehicle (UAV) enabled Internet of Things (IoT) network, where secondary/cognitive IoT devices upload their data to the UAV hub following a non-orthogonal multiple access (NOMA) protocol in the spectrum of the primary network. We aim to maximize the minimum lifetime of IoT devices by jointly optimizing the UAV location, transmit power, and decoding order subject to interference-power constraints in presence of the imperfect channel state information (CSI). To solve the formulated non-convex mixed-integer programming problem, we first jointly optimize the UAV location and transmit power for a given decoding order and obtain the globally optimal solution with the assistance of Lagrange duality and then obtain the best decoding order by exhaustive search, which is applicable to relatively small-scale scenarios. For large-scale scenarios, we propose a low-complexity sub-optimal algorithm by transforming the original problem into a more tractable equivalent form and applying the successive convex approximation (SCA) technique and penalty function method. Numerical results demonstrate that the proposed design significantly outperforms the benchmark schemes.
翻译:本文调查了由认知无人驾驶飞行器(UAV)促成的Things(IoT)互联网网络,在这个网络中,二级/认知性IoT装置在初级网络的频谱中,根据非横向多存(NOMA)协议,将其数据上传到UAV枢纽。我们的目标是通过共同优化UAV的位置、传输电力和在不完善的频道国家信息面前受干扰力制约的解码顺序,最大限度地扩大IoT装置的最小寿命。为了解决已拟订的非对等混合整数编程问题,我们首先共同优化UAV的位置,为给定的解码命令传输能量,并在Lagrange双轨的帮助下获得全球最佳解决方案,然后通过全面搜索获得最佳解码顺序,这种搜索适用于相对小规模的情景。对于大规模情景,我们建议采用低兼容性亚最佳算法,将原始问题转换为更易感应的对应形式,并应用连续的 convex(SC)技术和惩罚功能方法。Numeralical 结果表明,拟议的设计大大超出基准计划。