Given the noisy pairwise measurements among a set of unknown group elements, how to recover them efficiently and robustly? This problem, known as group synchronization, has drawn tremendous attention in the scientific community. In this work, we focus on orthogonal group synchronization that has found many applications, including computer vision, robotics, and cryo-electron microscopy. One commonly used approach is the least squares estimation that requires solving a highly nonconvex optimization program. The past few years have witnessed considerable advances in tackling this challenging problem by convex relaxation and efficient first-order methods. However, one fundamental theoretical question remains to be answered: how does the recovery performance depend on the noise strength? To answer this question, we study a benchmark model: recovering orthogonal group elements from their pairwise measurements corrupted by Gaussian noise. We investigate the performance of convex relaxation and the generalized power method (GPM). By applying the novel~\emph{leave-one-out} technique, we prove that the GPM with spectral initialization enjoys linear convergence to the global optima to the convex relaxation that also matches the maximum likelihood estimator. Our result achieves a near-optimal performance bound on the convergence of the GPM and improves the state-of-the-art theoretical guarantees on the tightness of convex relaxation by a large margin.


翻译:鉴于一组未知组元素之间的杂乱对称测量,如何高效和稳健地恢复这些元素? 这个问题被称为群体同步,引起了科学界的极大关注。 在这项工作中,我们侧重于正方形组同步,发现了许多应用程序,包括计算机视觉、机器人和冷冻-电子显微镜。 一种常用的方法是最小方估计,需要解决高度非电解器优化程序。 过去几年中,通过连接放松和高效第一阶方法,在解决这一具有挑战性的问题方面取得了相当大的进展。 然而,一个基本理论问题仍有待解答:恢复性能如何取决于噪音强度? 为了回答这一问题,我们研究一个基准模型:从计算机视觉、机器人和冷冻电子显微镜的测量中恢复或正方形组元素。我们调查了螺旋放松的性能和普及性能方法(GPM)的性能。我们通过应用新颖的eemph{le-left-one-out技术,证明光谱初始化GPMT与接近于深度稳定度的平衡性能,从而实现最接近深度的同步性软化。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员