This paper introduces recurrent equilibrium networks (RENs), a new class of nonlinear dynamical models for applications in machine learning, system identification and control. The new model class has ``built in'' guarantees of stability and robustness: all models in the class are contracting - a strong form of nonlinear stability - and models can satisfy prescribed incremental integral quadratic constraints (IQC), including Lipschitz bounds and incremental passivity. RENs are otherwise very flexible: they can represent all stable linear systems, all previously-known sets of contracting recurrent neural networks and echo state networks, all deep feedforward neural networks, and all stable Wiener/Hammerstein models. RENs are parameterized directly by a vector in R^N, i.e. stability and robustness are ensured without parameter constraints, which simplifies learning since generic methods for unconstrained optimization can be used. The performance and robustness of the new model set is evaluated on benchmark nonlinear system identification problems, and the paper also presents applications in data-driven nonlinear observer design and control with stability guarantees.
翻译:本文介绍了经常性平衡网络(REns),这是一个用于机器学习、系统识别和控制的新型非线性动态模型。新的模型类别“在“稳定性和稳健性保障”中“建立”了“新的”“基质”:该类中的所有模型都在萎缩——一种强大的非线性稳定性形式——而且模型能够满足规定的渐进整体四方制约(IQC),包括利普西茨约束和递增被动性。REnst在其他方面非常灵活:它们可以代表所有稳定的线性系统,所有以前已知的连接经常性神经网络和回声状态网络的成套系统,所有深线性向神经网络,以及所有稳定的Wiener/Hammerstein模型。REns直接由RN的矢量作为参数参数参数参数参数参数参数参数参数参数的参数参数参数参数化,即稳定性和稳健健度得到保证,因为可以使用不受限制的优化的通用方法进行简化学习。新模型的性能和稳健性根据非线性系统识别问题基准评估,文件还介绍了数据驱动的非线性观察员设计和控制的应用。