We focus on the problem of planning safe and efficient motion for a ballbot (i.e., a dynamically balancing mobile robot), navigating in a crowded environment. The ballbot's design gives rise to human-readable motion which is valuable for crowd navigation. However, dynamic stabilization introduces kinematic constraints that severely limit the ability of the robot to execute aggressive maneuvers, complicating collision avoidance and respect for human personal space. Past works reduce the need for aggressive maneuvering by motivating anticipatory collision avoidance through the use of human motion prediction models. However, multiagent behavior prediction is hard due to the combinatorial structure of the space. Our key insight is that we can accomplish anticipatory multiagent collision avoidance without high-fidelity prediction models if we capture fundamental features of multiagent dynamics. To this end, we build a model predictive control architecture that employs a constant-velocity model of human motion prediction but monitors and proactively adapts to the unfolding homotopy class of crowd-robot dynamics by taking actions that maximize the pairwise winding numbers between the robot and each human agent. This results in robot motion that accomplishes statistically significantly higher clearances from the crowd compared to state-of-the-art baselines while maintaining similar levels of efficiency, across a variety of challenging physical scenarios and crowd simulators.
翻译:我们的焦点是如何规划一个球机器人(即动态平衡的移动机器人)的安全和高效运动,在拥挤的环境中航行。球机器人的设计导致人可以理解的动作,这对人群导航很有价值。然而,动态稳定带来了动态限制,严重限制了机器人执行攻击性动作的能力,使避免碰撞和尊重人类个人空间复杂化。过去的工作减少了通过使用人类运动预测模型来鼓励预测性地避免碰撞而进行侵略性操纵的必要性。然而,多试剂行为预测由于空间的组合结构而困难。我们的主要洞察力是,如果我们能够捕捉到多剂动态的基本特征,我们就能在没有高纤维性预测模型的情况下实现预测性多剂碰撞的避免。为此,我们建立了一个模型预测控制结构,它使用人类运动预测的恒定速度模型,但通过采取最大限度地增加机器人和每个人类代理人之间不同种类的风速数的行动来监测并积极适应正在形成的人群-机器人-机器人-机器人-动作的结果,它能够实现预测性多剂的多剂碰撞避免,而没有高纤维性模型的预测模型,同时能够大大地完成从一个具有挑战性水平的人群-图像水平的地面扫标。