We study the generalization properties of ridge regression with random features in the statistical learning framework. We show for the first time that $O(1/\sqrt{n})$ learning bounds can be achieved with only $O(\sqrt{n}\log n)$ random features rather than $O({n})$ as suggested by previous results. Further, we prove faster learning rates and show that they might require more random features, unless they are sampled according to a possibly problem dependent distribution. Our results shed light on the statistical computational trade-offs in large scale kernelized learning, showing the potential effectiveness of random features in reducing the computational complexity while keeping optimal generalization properties.
翻译:我们用统计学习框架中随机特征研究山脊回归的概括性特性。 我们第一次显示,只有O( 1/\ sqrt{n}) $( sqrt{n) n) 的随机性能,而不是以前结果所建议的$( {n} ) 美元( $) 的随机性能,才能达到学习界限。 此外, 我们证明学习率更快, 并表明它们可能需要更随机性的特性, 除非根据可能存在的问题依附分布进行抽样。 我们的结果揭示了大规模内嵌化学习的统计计算取舍, 显示了随机性特征在减少计算复杂性的同时保持最佳的通用特性的潜在有效性 。