We present spatial-Slepian transform~(SST) for the representation of signals on the sphere to support localized signal analysis. We use well-optimally concentrated Slepian functions, obtained by solving the Slepian spatial-spectral concentration problem of finding bandlimited and spatially optimally concentrated functions on the sphere, to formulate the proposed transform and obtain the joint spatial-Slepian domain representation of the signal. Due to the optimal energy concentration of the Slepian functions in the spatial domain, the proposed spatial-Slepian transform allows us to probe spatially localized content of the signal. Furthermore, we present an inverse transform to recover the signal from the spatial-Slepian coefficients, and show that well-optimally concentrated rotated Slepian functions form a tight frame on the sphere. We develop an algorithm for the fast computation of the spatial-Slepian transform and carry out computational complexity analysis. We present the formulation of SST for zonal Slepian functions, which are spatially optimally concentrated in the polar cap~(axisymmetric) region, and provide an illustration using the Earth topography map. To demonstrate the utility of the proposed transform, we carry out localized variation analysis; employing SST for detecting hidden localized variations in the signal.
翻译:我们提出空间- Slepian 变换 ~ (SST) 空间- Slepian 变换 ~ 空间- Slepian 表示空间空间- Slepian 变换 ~ (SST) 空间- Slepian 表示空间空间- Slepian 变换 ~ (SST) 支持局部信号分析 。 我们使用通过解决 Slepian 空间- Slepian 空间- slepian 找到空间- Slepian 限制和空间最佳集中功能的 Slepian 空间- Slepian 空间- Slepian 显示空间- Slepian 显示空间- Slepian 显示的信号代表 。 我们使用空间- Slepian 变换的优化能量集中, 空间- Slepian 变换 使我们能够探测空间- Slepian 信号 空间- 本地化 。 此外, 我们展示了从空间- Slepat- symlog) 区域恢复信号的反向, 利用S 局域变图进行 演示S- 局域变 。