Distributed inference/estimation in Bayesian framework in the context of sensor networks has recently received much attention due to its broad applicability. The variational Bayesian (VB) algorithm is a technique for approximating intractable integrals arising in Bayesian inference. In this paper, we propose two novel distributed VB algorithms for general Bayesian inference problem, which can be applied to a very general class of conjugate-exponential models. In the first approach, the global natural parameters at each node are optimized using a stochastic natural gradient that utilizes the Riemannian geometry of the approximation space, followed by an information diffusion step for cooperation with the neighbors. In the second method, a constrained optimization formulation for distributed estimation is established in natural parameter space and solved by alternating direction method of multipliers (ADMM). An application of the distributed inference/estimation of a Bayesian Gaussian mixture model is then presented, to evaluate the effectiveness of the proposed algorithms. Simulations on both synthetic and real datasets demonstrate that the proposed algorithms have excellent performance, which are almost as good as the corresponding centralized VB algorithm relying on all data available in a fusion center.
翻译:在传感器网络中,Bayesian框架在传感器网络中分布的推论/估计值最近因其广泛适用性而引起人们的极大注意。变异巴耶西亚(VB)算法是一种方法,用于接近巴伊西亚推论中产生的近似易碎构件。在本文中,我们提议了两种新颖的分布在Bayesian一般推论问题VB算法,可适用于一个非常一般的类类同性能-性能实验模型。在第一种方法中,每个节点的全球自然参数都利用利用利用近似空间的微小的自然梯度优化优化,利用近似空间的Riemannian几何测量法,然后采取信息传播步骤,与邻国合作。在第二种方法中,分布估计的优化配方是在自然参数空间中设定的,通过乘数的交替方向法(ADMMM)来解决。然后提出了一种分布的推论/估计法的应用,以评价拟议的算法的有效性。在合成和真实数据中,对合成和真实的测算法的模拟都表明,拟议的中央算法具有极好的精确性,因此,所有可靠的测算法是可靠的核心。