The processing and recognition of geoscience images have wide applications. Most of existing researches focus on understanding the high-quality geoscience images by assuming that all the images are clear. However, in many real-world cases, the geoscience images might contain occlusions during the image acquisition. This problem actually implies the image inpainting problem in computer vision and multimedia. To the best of our knowledge, all the existing image inpainting algorithms learn to repair the occluded regions for a better visualization quality, they are excellent for natural images but not good enough for geoscience images by ignoring the geoscience related tasks. This paper aims to repair the occluded regions for a better geoscience task performance with the advanced visualization quality simultaneously, without changing the current deployed deep learning based geoscience models. Because of the complex context of geoscience images, we propose a coarse-to-fine encoder-decoder network with coarse-to-fine adversarial context discriminators to reconstruct the occluded image regions. Due to the limited data of geoscience images, we use a MaskMix based data augmentation method to exploit more information from limited geoscience image data. The experimental results on three public geoscience datasets for remote sensing scene recognition, cross-view geolocation and semantic segmentation tasks respectively show the effectiveness and accuracy of the proposed method.
翻译:地球科学图像的处理和识别有着广泛的应用。 大部分现有研究侧重于通过假设所有图像都清晰,了解高质量的地球科学图像。 然而, 在许多现实世界中, 地球科学图像可能会包含图像获取过程中的隔离性。 这个问题实际上意味着计算机视觉和多媒体中的图像涂色问题。 根据我们的知识, 所有现有的图像涂色算法都学会修复隐蔽区域, 以提高可视化质量, 它们对于自然图像来说是非常好的, 但对于地球科学图像来说却不够好, 而不理会地球科学相关任务。 本文旨在修复隐蔽区域, 以便用先进的可视化质量来改善隐蔽的地球科学任务性业绩, 而不同时改变目前采用的深层基于地球科学模型。 由于地球科学图像的复杂背景, 我们建议用粗糙到松散的对立背景分析器来重建隐蔽图像区域。 由于地球科学图像的数据有限, 我们使用基于磁力Mix的数据增强部分, 利用遥感方法分别从地球科学中获取的遥感数据。