The proliferation of non-cooperative resident space objects (RSOs) in orbit has spurred the demand for active space debris removal, on-orbit servicing (OOS), classification, and functionality identification of these RSOs. Recent advances in computer vision have enabled high-definition 3D modeling of objects based on a set of 2D images captured from different viewing angles. This work adapts Instant NeRF and D-NeRF, variations of the neural radiance field (NeRF) algorithm to the problem of mapping RSOs in orbit for the purposes of functionality identification and assisting with OOS. The algorithms are evaluated for 3D reconstruction quality and hardware requirements using datasets of images of a spacecraft mock-up taken under two different lighting and motion conditions at the Orbital Robotic Interaction, On-Orbit Servicing and Navigation (ORION) Laboratory at Florida Institute of Technology. Instant NeRF is shown to learn high-fidelity 3D models with a computational cost that could feasibly be trained on on-board computers.
翻译:轨道上不合作的常住空间物体(RSOs)的扩散刺激了对主动清除空间碎片、在轨维修、分类和功能识别的需求,计算机视觉方面的最近进展使得能够根据从不同角度拍摄的一套2D图像对物体进行高清晰的3D建模,这项工作使Instant NeRF和D-NERF适应了神经光场算法的变异,以图解轨道中的RSO的功能识别和协助 OOS为目的,对3D重建质量和硬件要求进行了评价,使用在佛罗里达技术研究所轨道机器人互动、Opitive维修和导航实验室两个不同光和运动条件下拍摄的航天器模拟图像数据集,对3D模型进行了评价,并展示了NERF在机载计算机上可以培训的计算成本中学习高不共性3D模型。